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Accurate calculation of time to go until impact is an essential
component in coordinating multiple precision-guided munitions for
a simultaneous strike. Conventional means for calculating time to go
contain potential errors, due in part to the trajectory curvatures, and
may fall short on the accuracy required to achieve a desired impact
time, especially if velocity changes rapidly due to atmospheric drag
and gravity. A closed-loop guidance law will be presented in which
an optimized, piecewise continuous, and smooth family of
polynomial trajectories is parameterized in terms of downrange
distance and has a closed-form solution of arc length for improved
calculation of time to go.
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I. INTRODUCTION

Missiles and precision-guided munitions form an
integral part of modern offensive warfare, and the need for
weaponry to act in a coordinated or cooperative manner
will be a necessary component of future advanced warfare.
In this context, the term cooperative implies that multiple
airborne weapons have the ability to formulate a
consensus, in either a distributed or a centralized manner,
on certain guidance-related parameters in order to
neutralize a target more effectively. A cooperative missile
strike becomes necessary if simultaneous arrival of
warheads is required to overwhelm defensive
countermeasures such as a close-in weapons system, or if
arrival on target in spaced time intervals is necessary as in
the case of bunker neutralization. For interceptor
applications, multiple simultaneous engagement poses a
better probability of target kill.

The cooperation of weapons boils down to a primary
core capability: the ability to control each weapon’s
impact time. Calculation of impact time results directly
from the time-to-go parameter and is thus considered to be
a large component of the feedback source in control
design. In general, however, controlling impact time is
quite difficult, since most missiles and projectiles possess
reduced degrees of control freedom due to the fact that
velocity is uncontrollable. Such systems are considered to
be underactuated. In addition, calculating time to go using
existing methods, such as range-over-range-rate and
range-over-missile-velocity, is subject to considerable
error during periods of changing velocity (high drag
acceleration) and/or excessive trajectory curvature. The
issues of underactuation and the potential for error in the
time-to-go calculation pose significant control-design
challenges.

Searching the open literature, we can segregate
existing work into six groups. In Group 1 [1–3], we find
works which formulate optimal guidance laws with
constraints on impact angle. In these works, missile
velocity is considered constant and linearized models of
either the missile kinematics or engagement kinematics
are used. While numerous papers concern optimal
guidance with terminal-angle constraints, very few works
pertaining to impact-time constraints can be found. These
comprise Group 2. In this group, [4] formulates an optimal
guidance law with constraints on impact angle as well as
impact time, and [5] considers a time-optimal formulation
with impact-angle constraints. In [6], a Lyapunov-based
guidance design for impact-time control is chosen. Ref.
[7] considers an optimal formulation for impact-time
control alone. An interesting note about this work is that
the independent variable in the state model is in terms of
distance instead of time. This is done to keep the terminal
boundary condition from becoming explicit in impact
time. In each of these works, missile velocity is constant
and standard formulations for time to go are used. In most
of the cases, linearized models are also used. Ref. [8]
considers time-of-flight control as well as range extension
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for precision munitions. Atmosphere and disturbances are
considered in this work, which makes it suitable for some
general performance comparisons in the simulation study.

Attempts to improve estimates of time to go for both
classical and modern guidance laws comprise Group 3
[9–15]. In most of these works, linear models are used in
the formulation, and missile velocity and acceleration
profiles are assumed to be fully known or modeled with
linear or linear piecewise equations. No in-flight
correction due to disturbance is proposed. Ref. [9]
attempts to improve on this by deriving a recursive
algorithm to correct the time-to-go estimate when either a
heading-angle error is present or changes in path length
occur. It does not take into account changes in time to go
due to drag or atmospheric disturbances. The change in
path length is estimated from the deviation from a
straight-line path. The works contained in Group 4
[16–18] considers the development of optimal guidance
laws when the missile velocity is not constant. In [17], the
derived guidance law relies on predicted velocity profiles
which can be updated to compensate for error. However,
the law is derived using linearized models and is explicit
in a terminal time-boundary constraint. Searching the
literature further, we find scarce results for Group 5:
cooperative guidance laws for missiles. In [19] and [20],
optimal formulations are derived to address the issue of
cooperative salvo attack on a target; however, both works
assume constant velocity, and in [20], the time-to-go
estimation methods of [9] are utilized. In [19], attempts to
estimate time to go are done using an arc-length
approximation of the expected engagement. The resulting
equation is approximated, since few arc-length algorithms
result in closed-form solutions. Ref. [21] discusses work
in cooperative-missile research and the problems
associated with.

In Group 6, a path-planning approach to guidance
synthesis is taken. Ref. [22] takes a somewhat similar
approach to quad-segment polynomial trajectory (QSPT)
guidance in that distance is segmented and a spline-based
trajectory is developed. However, that work uses the
standard range-over-missile-velocity for time-to-go
calculation, and the terminal boundary constraints are a
function of the impact time. Each of the six groups
discussed contains one or more potential sources of error
due to the linearization of the equations of motion, the
time-to-go calculation used, or the constant-velocity
assumption.

In contrast to each of the groups discussed, QSPT,
introduced in [23], is an optimized guidance law that is
nonexplicit in time to go, has an exact closed-form
solution for arc length for an improved time-to-go
calculation, and does not rely on small-angle
approximation or the constant-velocity assumption in
order to gain a closed-form solution. The novelty of QSPT
exists in the availability of a closed-form solution for arc
length. This provides an advantage in that the
arc-length-based time-to-go calculation is unaffected by
trajectory curvature, thus removing a significant

component of error found in current methods. A second
advantage to this approach is that the optimization (as well
as the entire guidance law) is nonexplicit in time to go. A
third advantage is that trajectory synthesis is independent
of the time parameter. This provides the ability to conduct
accurate preflight analysis along prescribed trajectories
using high-fidelity drag and atmospheric models to
produce tabular reference models of impact time for use in
the corresponding impact-time control design. The
individual elements of the tabular models are referenced
with respect to downrange distance and not with respect to
time. This avoids problematic timing issues between
actual in-flight data and the reference model.

This paper is organized as follows: Section II
formulates the general problem, presents the equations of
motion, defines the configuration space, and specifies the
arc-length equations. The design and implementation of
the closed-loop guidance law are also presented. Section
III derives the QSPT coefficients required for trajectory
design. Section IV details the trajectory optimization.
Section V gives a step-by-step process of designing a
QSPT trajectory. Section VI details the derivation of the
time-to-go equations as well as the procedure for
conducting preflight analysis. Section VII derives the
impact-time control law, and Section VIII provides
extensive simulation analysis of the proposed design.

II. PROBLEM FORMULATION

The problem of achieving a prescribed impact time for
a guided munition at a stationary target located at some
terminal position in the downrange/cross-range plane is
considered. The trajectory is analytically designed in
closed form, and the length of the trajectory is analytically
calculated. Although projectile velocity changes due to
gravity, drag, and atmosphere, the time to go can be
estimated online based upon the current velocity and the
remainder of the trajectory (not merely the downrange to
the target). For this work, initial conditions for generation
of the guidance solution are considered to be trajectory
apogee after boost phase or the deployment point, such as
the bay door of an aircraft.

A. Equations of Motion

The configuration space is shown in Fig. 1; the
equations of motion used for synthesis of the guidance law
are

V̇ = −ad − g sin (γ ) (1)

χ̇ = 1

V cos (γ )
uχ (2)

γ̇ = 1

V

(
uγ + g cos (γ )

)
(3)

ẋ = V cos (γ ) cos (χ) (4)

ẏ = V cos (γ ) sin (χ) (5)
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Fig. 1. Configuration space.

ż = V sin (γ ) , (6)

where the set of initial (subscript 0) and terminal
(subscript T) conditions is given by{

(x0, y0) , (x0, z0) , (χ0, γ0)

(xT, yT) , (xT, zT) , (χT, γT) .
(7)

The velocity vector V is contained within the configuration
space consisting of downrange x, cross-range y, and
altitude z. Divert controls uχ and uγ in (2) and (3) are
normal to V; acceleration due to drag ad is in the negative
direction of V; and χ and γ are, respectively, the heading
and flight-path angles. The value of gravity g used in this
work is 9.81 m/s2. Equation (1) contains unknown drag ad

to be compensated for by trajectory planning and
corresponding impact-time control. A family of
trajectories satisfying (4)–(6) is prescribed next.

B. Trajectory Parameterization

In the proposed development, segments of cross-range
and altitude trajectories are chosen analytically within the
family of second-order polynomials of the form

yn (x) = a
y
n + c

y
nx + κ

y
n x2

zn (x) = az
n + cz

nx + κz
nx

2,
(8)

where n ∈ {1, · · ·, N} denotes the index of trajectory
segments. Parameterization of the trajectories should be
chosen to satisfy dynamic equations (4)–(6) or,
equivalently,

∂y

∂x
= tan (χ) ,

∂z

∂x
= tan (γ )

cos (χ)
, (9)

which are obtained by dividing (4) into (5) and (6),
respectively. In fact, the equations in (9) are satisfied for
all times if the trajectories in (8) satisfy (9) at the initial
and terminal conditions given by (7). Therefore, the six
boundary conditions provided by (7) map into the
path-planning boundary conditions required by (8)
according to{

(x0, y0) , ∂
∂x

y1 (x0) = tan (χ0)

(xT, yT) , ∂
∂x

y4 (xT) = tan (χT)
(10)

Fig. 2. Cross-range profile—segmentation of downrange.

and {
(x0, z0) , ∂

∂x
z1 (x0) = tan(γ0)

cos(χ0)

(xT, zT) , ∂
∂x

z4 (xT) = tan(γT)
cos(χT) .

(11)

An advantage of using the second-order polynomials in
the form of (8) is that arc length can be calculated in
closed form for ease of time-to-go calculation, and such a
computation is free from the typical error due to curvature.
Specifically, the arc length of the trajectories in (8) is
given by

S =
∫

ds

=
∫ xf

x0

√
1 +

(
∂

∂x
yn (x)

)2

+
(

∂

∂x
zn (x)

)2

dx, (12)

where ds
�=
√

(dx)2 + (dy)2 + (dz)2 is the incremental
length. The following section illustrates the basic structure
of a QSPT trajectory.

C. QSPT Guidance

The trajectories prescribed by (8) are each composed
of N = 4 individual segments. The choice of four segments
provides enough design coefficients for the satisfaction of
initial and terminal boundary conditions as well as enough
remaining coefficients to satisfy the boundary conditions
required to impose smooth and continuous segmentation
of the trajectory. Under the N = 4 design choice, one free
design variable remains after satisfaction of all boundary
conditions, and is used for trajectory optimization as well
as the trajectory planning required for impact-time control
purposes. We now define the free variables to be κ

y

4 for the
cross-range trajectory and κz

4 for the altitude trajectory.
From this point forward, development of QSPT coefficient
equations will be carried out for the cross-range only,
unless otherwise specified. In every case, the derived
equations apply directly to the altitude trajectory, given the
appropriate boundary conditions.

Fig. 2 illustrates the general structure of a QSPT
trajectory, where x0 and xT denote the initial and terminal
downrange positions and xα , xβ , and xδ are internal
downrange segmentation points.
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A specific choice is that the downrange x is divided
into four equal sections:

xα = x0 + 1

4
(xT − x0)

xβ = x0 + 1

2
(xT − x0) (13)

xδ = x0 + 3

4
(xT − x0) .

Initial and terminal boundary conditions for yn(x) are
enforced according to (10). The altitude trajectory, of
course, would be subject to (11). Internal boundary
conditions are used to impose the smooth and continuous
segmentation of the trajectory and are defined at the
downrange locations of (13). The sets of internal boundary
conditions for yn(x) are given as⎧⎨

⎩
y1 (xα) = y2 (xα)

∂

∂x
y1 (xα) = ∂

∂x
y2 (xα)

(14)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y2
(
xβ

) = y3
(
xβ

)
∂

∂x
y2
(
xβ

) = ∂

∂x
y3
(
xβ

)
∂2

∂x2
y2
(
xβ

) = ∂2

∂x2
y3
(
xβ

) (15)

⎧⎨
⎩

y3 (xδ) = y4 (xδ)

∂

∂x
y3 (xδ) = ∂

∂x
y4 (xδ) .

(16)

In (14), only position and the first partial are enforced as
boundary conditions, which allows this location to be a
point of inflection of the trajectory, as shown in Fig. 2.
This is also true for (16). On the other hand, (15) enforces
the second-order partial, which is required in order to join
the first two segments with the last two in a smooth,
continuous manner. The coefficient equations that result
from enforcing the internal boundary conditions are given
in Section III. In that section, coefficient time-derivative
equations are also developed which are required for the
closed-loop guidance design presented next.

D. Guidance Design and Implementation

The open-loop guidance law is given from (2)–(4) as

uχ = ∂χ

∂x
V 2cos2(γ ) cos(χ),

uγ = ∂γ

∂x
V 2 cos(γ ) cos(χ) − g cos(γ ), (17)

where, according to (8) and (9), the open-loop angular
profiles derived in terms of QSPT are given as

χ = tan−1 (cy
n + 2κy

n x
)

γ = tan−1 ((cz
n + 2κz

nx
)

cos
(
tan−1 (cy

n + 2κy
n x
)))

= tan−1

⎛
⎝ cz

n + 2κz
nx√

1 + (
c
y
n + 2κ

y
n x
)2

⎞
⎠ (18)

and the partial derivatives can be easily calculated.

Alternatively, we can implement the corresponding
closed-loop guidance design. To this end, define

ey = y − yn, ez = z − zn, (19)

where yn and zn are given by (8) for the period of time
when the nth segment of the trajectories is being
implemented. Second-order time derivatives of (19) are
explicit in the controls uχ and uγ through the equations

ÿ = −ad cos(γ ) sin(χ) − 2g sin(γ ) cos(γ ) sin(χ)
− sin(γ ) sin(χ)uγ + cos(χ)uχ

z̈ = −ad sin(γ ) + g
(
cos2(γ ) − sin2(γ )

)+ cos(γ )uγ

ÿn = 2ċy
nẋ + 2κy

n (ẋ)2 + 4κ̇y
n xẋ + cy

nẍ + 2κy
n xẍ

z̈n = cz
nẍ + 2κz

n(ẋ)2 + 2κz
nxẍ (20)

where ẋ is given from (4) and ẍ is given by

ẍ = −ad cos(γ ) cos(χ) − 2g sin(γ ) cos(γ ) cos(χ)
− sin(γ ) cos(χ)uγ − sin(χ)uχ . (21)

It should be noted that the distinct differences between ÿn

and z̈n in (20) relating to the coefficient time derivatives
are due to the design choices imposed on the free variables
κ

y

4 and κz
n. This will be addressed in detail in Section III.B.

It follows from the second derivative of (19), and the
substitution of (21) into (20), that the error system is given
by [

ëy

ëz

]
= A + B

[
uχ

uγ

]
, (22)

where

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−ad cos(γ ) sin(χ) − 2g sin(γ ) cos(γ ) sin(χ)
− (

2ċ
y
nẋ + 4κ̇

y
n xẋ + 2κ

y
n (ẋ)2

)
+ ∂

∂x
yn (ad cos(γ ) cos(χ)+2g sin(γ ) cos(γ ) cos(χ))

−ad sin(γ ) + g
(
cos2(γ ) − sin2(γ )

)− 2κz
n(ẋ)2

+ ∂

∂x
zn (ad cos(γ ) cos(χ)+2g sin(γ ) cos(γ ) cos(χ))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(23)

B=[
cos(χ)+ ∂

∂x
yn sin(χ) − sin(γ ) sin(χ)+, ∂

∂x
yn sin(γ ) cos(χ)

∂
∂x

zn sin(χ) cos(γ ) + ∂
∂x

zn sin(γ ) cos(χ)

]
.

(24)

Hence, the closed-loop guidance law is[
uχ

uγ

]
= B−1

{[
ky (y − yn) + k′

y (ẏ − ẏn)

kz (z − zn) + k′
z (ż − żn)

]
− A

}
,

(25)
under which the actual trajectories converge
asymptotically and exponentially to the guidance
trajectories of yn and zn. The closed-loop gains are ky, kz,
k′
y , and k′

z, and drag acceleration ad is estimated in real
time using the data from the onboard accelerometer.

E. Inversion-Matrix Singularities

The inversion matrix of (24) becomes singular if the
flight-path angle reaches ±π/2; however, the slope of
second-order polynomials cannot reach vertical angles, as
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that would require the partial derivative (∂/∂x)yn to be
undefined. Therefore, the inversion of (24) can never reach
a singularity under normal operation. On the other hand, it
is a requirement in some cases that a precision munition
reach a vertical angle in order to drop in on a target from
directly above. An easy solution to this problem is to
reparameterize (8) in terms of a new independent variable,
such as z, and switch the guidance law accordingly. This
can be done at a point when the projectile is close to the
target. Under the reparameterization, (8) can operate at
vertical angles and the switched-form guidance law is free
of singularity at ±π/2. In this case, we restrict the heading
angle to χ < ±π/2, which is a reasonable constraint to
impose. The process of reparameterization and the
derivation of the switched guidance law are outlined in
Appendix A and will be demonstrated in the simulation.

III. DESIGN OF QSPT COEFFICIENTS

Solution sets for the coefficients in (8) must be found
according to initial, terminal, and internal boundary
conditions. In the steps that follow, the four segments are
joined together to form a single continuous trajectory. The
first two steps, A1 and A2, join Segments 1 and 2,
resulting in coefficient equations for a

y

1,2 and c
y

1,2. The
next two steps, A3 and A4, join Segments 3 and 4, which
results in equations for a

y

3,4 and c
y

3,4. The final step, A5,
then joins Segments 2 and 3 and results in a vector matrix
expression which gives equations for κ

y

1,2,3. The design of
free variable κ

y

4 is addressed in Sections III.B and IV.

A. Solving the Coefficients

Step A1) Solve the coefficients of Segment 1 with
respect to initial boundary conditions—i.e.,

y1 (x) = a
y

1 + c
y

1x + κ
y

1 x2, (26)

where a
y

1 and c
y

1 are determined from the initial boundary
conditions given in (10) as

a
y

1 = y1 (x0) − c
y

1x0 − κ
y

1 x2
0

c
y

1 = ∂

∂x
y1 (x0) − 2κ

y

1 x0.
(27)

Step A2) Join Segment 1 to Segment 2 by enforcing
the internal boundary conditions of (14). This requires
solving the equations

y1 (xα) = y2 (xα)
(28)

∂

∂x
y1 (xα) = ∂

∂x
y2 (xα)

for a
y

2 and c
y

2 , which results in

a
y

2 = a
y

1 + c
y

1xα + κ
y

1 x2
α − c

y

2xα − κ
y

2 x2
α

c
y

2 = c
y

1 + 2κ
y

1 xα − 2κ
y

2 xα.
(29)

Step A3) Solve Segment 4 subject to the terminal
boundary conditions given in (10). This results in

a
y

4 = yT − c
y

4xT − κ
y

4 x2
T

c
y

4 = ∂

∂x
y4 (xT) − 2κ

y

4 xT.
(30)

Step A4) Join Segment 4 to Segment 3 by enforcing
the internal boundary conditions of (16). This requires
solving the boundary equations

y3 (xδ) = y4 (xδ)
∂

∂x
y3 (xδ) = ∂

∂x
y4 (xδ) (31)

for a
y

3 and c
y

3 , which results in

a
y

3 = a
y

4 + c
y

4xδ + κ
y

4 x2
δ − c

y

3xδ − κ
y

3 x2
δ

(32)
c
y

3 = c
y

4 + 2κ
y

4 xδ − 2κ
y

3 xδ.

Step A5) Join Segment 3 to Segment 2 by enforcing
the boundary conditions in (15). This requires solving the
equations

y2
(
xβ

) = y3
(
xβ

)
∂

∂x
y2
(
xβ

) = ∂

∂x
y3
(
xβ

)
(33)

∂2

∂x2
y2
(
xβ

) = ∂2

∂x2
y3
(
xβ

)
,

which results in a vector matrix expression.
Simultaneously solving these equations for κ

y

1 , κ
y

2 , and κ
y

3
gives⎡
⎢⎣

κ
y

1

κ
y

2

κ
y

3

⎤
⎥⎦ =

⎡
⎢⎣

C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤
⎥⎦

−1 ⎡
⎢⎣

D11

D21

D31

⎤
⎥⎦ = C−1D, (34)

where

C11 = −x2
0 + x2

α + 2x0xβ − 2xαxβ

C12 = −x2
β + 2xαxβ − x2

β

C13 = x2
δ − 2xβxδ + x2

β

C21 = 2 (x0 − xα)

C22 = 2
(
xα − xβ

)
C23 = 2

(
xβ − xδ

)
C31 = 0

C32 = −2

C33 = 2

(35)

and

D11 = y1 (x0) + ∂

∂x
y1 (x0)

(
xβ − x0

)− y4 (xT)

+ ∂

∂x
y4 (xT)

(
xT − xβ

)
− κ

y

4

(
x2

T − x2
δ − 2xTxβ + 2xβxδ

)
D21 = ∂

∂x
y1 (x0) − ∂

∂x
y4 (xT) − 2κ

y

4 (xδ − xT)

D31 = 0. (36)

In the next section, time derivatives of the coefficient
equations are derived.

B. Solutions of Time Derivatives

The C-matrix inversion elements of (35) are strictly in
terms of downrange segmentation points and, for a
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stationary target, remain constant and nonsingular
throughout the engagement. The equations in (36), on the
other hand, are a function of free variable κ

y

4 , and the
elements of this 3 × 1 matrix can be subject to change
during the engagement depending on the design choices
made for κ

y

4 .
As stated in Section II.C, two possible functionalities

are imposed on the free variable κ
y

4 . The first is an
initializing requirement—that is, find κ

y

4 which optimizes
the trajectory in some manner. In fact, once found, the
optimizing value defined as ∗κy

4 remains constant
throughout the engagement.

The second functionality for κ
y

4 involves adjustment of
the trajectory in order to change the on-target arrival time,
or impact time. In this case, κ

y

4 moves from the optimizing
value ∗κy

4 in a direction which attempts to reduce the error
between a currently computed impact time and a desired
impact time. Therefore, the coefficient time derivatives
ȧ

y

1,2,3,4, ċ
y

1,2,3,4, and κ̇
y

1,2,3 are driven strictly by κ̇
y

4 .
In this work, we choose to involve only the cross-range

in trajectory planning for the control of impact time. The
altitude trajectory remains fixed at the value set by ∗κz

4 . A
particular choice for κ

y

4 can be prescribed as the state
solution to the first-order system

κ̇
y

4 = μ, (37)

where the initial condition is ∗κy

4 and μ is the impact-time
control. The single-integrator system of (37) was chosen
to ensure a smooth continuous transition of the QSPT
coefficients. A recursive approach can be chosen, but care
should be taken to prevent step disturbances in the
trajectory.

Because the altitude trajectory remains fixed,
coefficient derivatives ȧz

n, ċz
n, and κ̇z

n equal zero.
Furthermore, the choice of bang-bang control μ given in
Section VII results in impulse functions for the
second-order time derivatives of (37) which are thus
ignored. This is the reason for the differences in the
coefficient derivatives between ÿn and z̈n in (20).

To find expressions for the cross-range coefficient
derivatives, we begin with (34) and group the D matrix
according to terms involving κ

y

4 . From direct inspection of
(36) we find ⎡

⎢⎣
D11

D21

D31

⎤
⎥⎦ =

⎡
⎢⎣

f11 + g11κ
y

4

f22 + g22κ
y

4

0

⎤
⎥⎦ , (38)

where

f11 = y1 (x0) − y4 (xT) + ∂

∂x
y1 (x0)

(
xβ − x0

)
+ ∂

∂x
y4 (xT)

(
xT − xβ

)
g11 = −x2

T + x2
δ + 2xTxβ − 2xβxδ

f22 = ∂

∂x
y1 (x0) − ∂

∂x
y4 (xT)

g22 = 2 (xT − xδ) , (39)

which then results in⎡
⎢⎣

κ
y

1

κ
y

2

κ
y

3

⎤
⎥⎦ = C−1

⎡
⎢⎣
⎡
⎢⎣

f11

f22

0

⎤
⎥⎦+

⎡
⎢⎣

g11

g22

0

⎤
⎥⎦ κ

y

4

⎤
⎥⎦ . (40)

Matrix C−1 and the equations in (39) are constant. Given
(37), the derivative of (40) is therefore⎡

⎢⎣
κ̇

y

1

κ̇
y

2

κ̇
y

3

⎤
⎥⎦ = C−1

⎡
⎢⎣

g11

g22

0

⎤
⎥⎦μ. (41)

Then, finding the coefficient derivatives of (27), (29), (30),
and (32) gives

ȧ
y

1 = −ċ
y

1x0 − κ̇
y

1 x2
0

ċ
y

1 = −2κ̇
y

1 x0

ȧ
y

2 = ȧ
y

1 + ċ
y

1x1 + κ̇
y

1 x2
α − ċ

y

2x0 − κ̇
y

2 x2
α

ċ
y

2 = ċ
y

1 + 2κ̇
y

1 x1 − 2κ̇
y

2 x1

ȧ
y

3 = ȧ
y

4 + ċ
y

4xδ + x2
δ μ − ċ

y

3xδ − κ̇
y

3 x2
δ

ċ
y

3 = ċ
y

4 + 2xδμ − 2κ̇
y

3 x3

ȧ
y

4 = −ċ
y

4xT − x2
Tμ

ċ
y

4 = −2xTμ.

(42)

The coefficient time-derivative equations of (41) and (42)
are initialized to values set by (27), (29), (30), (32), and
(34) with the proper optimizing values of ∗κy

4 and ∗κz
4

chosen.

IV. MINIMIZATION OF PERFORMANCE INDEX

A minimization of control energy can be found using a
one-time numerical line search of κ

y

4 and κz
4 values which

minimize a given performance index and result in ∗κy

4 and
∗κz

4 . A basic performance index for the minimization of
control energy is

J = 1

2

tf∫
t0

uTRudt, (43)

where the control

u = [
uχ uγ

]T
(44)

is a vector of the open-loop controls given by (17) and
superscript T denotes the transpose. For convenience, the
2 × 2 weighting matrix R is chosen as unity. Two options
can be chosen for the minimization of (43). First, the
open-loop controls of (17) can be written in terms of
QSPT using the angular profiles given by (18). Then J can
be numerically integrated and values for κ

y
n and κz

n can be
found that minimize J. A less involved method results in a
second option where each trajectory is minimized
separately by assuming either χ = 0 or γ = 0. To that end,
if γ = 0 is chosen, the open-loop controls of (17) become

uχ = V 2 ∂χ

∂x
cos (χ)

(45)
uγ = 0,
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with the corresponding equation for χ given for the nth
segment as

χn = tan−1 (cy
n + 2κy

n x
)
, (46)

from which the partial derivative required by uχ is easily
obtained. In light of (45), the performance index reduces to

J = 1

2

tf∫
t0

u2
χdt, (47)

which is a minimization of control energy for the
cross-range trajectory. Substituting (46) into (45) and then
(45) with the corresponding partial derivative into (47)
gives the performance index for the nth segment as

Jn = 1

2

tf∫
t0

[
2κ

y
nV 2

1 + (
c
y
n + 2κ

y
n x
)2 cos

(
tan−1

(
cy
n + 2κy

n x
))]2

dt,

(48)
which simplifies to

Jn =
tf∫

t0

2
(
κ

y
n

)2
V 4(

1 + (
c
y
n + 2κ

y
n x
)2
)3 dt. (49)

For convenience, a change in the variable of integration
can be done with the transformation (see Appendix B)

dt =
√

1 + (
c
y
n + 2κ

y
n x
)2

V
dx, (50)

which when substituted for dt in (49) gives

Jn =
xf∫

x0

2
(
κ

y
n

)2
V 3(

1 + (
c
y
n + 2κ

y
n x
)2
) 5

2

dx. (51)

A closed-form solution for the integral of (51) is then
given as

Jn =
κ

y
nV 3

(
2
(
c
y
n

)3 + 12
(
c
y
n

)2
κ

y
n x + 24c

y
n

(
κ

y
n

)2
x2 + 3c

y
n + 16

(
κ

y
n

)3
x3 + 6κ

y
n x
)

3
[
1 + (

c
y
n + 2κ

y
n x
)2
]3/2

, (52)

which when evaluated at the boundary conditions for the
corresponding nth segment can be minimized with respect
to κ

y

4 as

J = minκ
y

4

{
J1|xα

x0
+ J2|xβ

xα
+ J3|xδ

xβ
+ J4|xT

xδ

}
, (53)

which results in the optimizing value ∗κy

4 . The
minimization of (53) involves a simple numerical line
search of κ

y

4 values at the initialization stage before
launch. This same process is followed for the choice of
χ = 0, which results in an altitude-trajectory minimization

of control energy. If gravity is ignored, the same general
design equations result.

V. SUMMARY OF QSPT ALGORITHM

The following steps are required in order to implement
(8) and create an optimized QSPT trajectory.

Step B1) Choose initial and terminal boundary
conditions for (8) given by (10) and (11). Initial conditions
will be the initial position and attitude of the missile at the
beginning of the engagement. Terminal conditions will be
the target’s current position and the desired impact angle.

Step B2) Choose the independent variable and
implement (13) to determine numerical values for the
segmentation locations.

Step B3) Find the optimizing values ∗κy

4 and ∗κz
4 .

Step B4) Solve the coefficients of (27), (29), (30), (32),
and (34) each for yn and zn. For a basic trajectory requiring
no impact-time control, all coefficients are computed once
and remain constant. If impact-time control is to be
utilized, these coefficient values become initializing values
for the coefficient time derivatives of Section III.

Step B5) Implement the closed-loop guidance law of
(25).

VI. TIME TO GO

With all of the necessary parameters required to create
a trajectory now defined, a solution for time to go can be
formulated in terms of arc length and the velocity along
the arc as

Tgo = S

V
, (54)

where S is given from (12) and is continually updated as
the missile’s current downrange position moves from the
initial position to the terminal position.

To compute the initial arc length, the integrations
required by (12) must span all four segments, subject to
the following bounds of integration, as

S =
xα∫

x0

√
1 +

(
∂

∂x
y1 (x)

)2

+
(

∂

∂x
z1 (x)

)2

dx

+
xβ∫

xα

√
1 +

(
∂

∂x
y2 (x)

)2

+
(

∂

∂x
z2 (x)

)2

dx
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+
xδ∫

xβ

√
1 +

(
∂

∂x
y3 (x)

)2

+
(

∂

∂x
z3 (x)

)2

dx

+
xT∫

xδ

√
1 +

(
∂

∂x
y4 (x)

)2

+
(

∂

∂x
z4 (x)

)2

dx, (55)

and a general solution of the integrals for the nth segment
is given as

Sn = 1

4

⎡
⎢⎣a + b ln (c) + d ln (2)((

κ
y
n

)2 + (
κz

n

)2
)3/2

⎤
⎥⎦ , (56)

where

a =
[
κy

n

∂

∂x
yn (x) + κz

n

∂

∂x
zn (x)

]√(
κ

y
n

)2 + (
κz

n

)2

×
√

1 +
(

∂

∂x
yn (x)

)2

+
(

∂

∂x
zn (x)

)2

b = (
κy

n

)2 + (
κz

n

)2 + (
cy
n

)2(
κz

n

)2 + (
cz
n

)2(
κy

n

)2 − 2cy
nκ

y
n cz

nκ
z
n

c = κy
n

∂

∂x
yn (x) + κz

n

∂

∂x
zn (x) +

√(
κ

y
n

)2 + (
κz

n

)2

×
√

1 +
(

∂

∂x
yn (x)

)2

+
(

∂

∂x
zn (x)

)2

d = 2
(
κy

n

)2 + 2
(
κz

n

)2 + 2
(
cy
n

)2(
κz

n

)2 + 2
(
cz
n

)2(
κy

n

)2

− 4cy
nκ

y
n cz

nκ
z
n. (57)

The total initial arc length is then given as

S = S1|xα

x0
+ S2|xβ

xα
+ S3|xδ

xβ
+ S4|xT

xδ
. (58)

In real-time applications, (54) can be continuously
updated with the current downrange value. It will be
shown in Section VIII that under constant velocity, (54)
produces a linear response over the engagement and is
therefore not subject to error due to trajectory curvature.
In this case, the time to go initially computed at the
beginning of the engagement is, in fact, the impact time.

A. Nonconstant Velocity

Unlike standard methods, arc length is used in the
calculation of time to go instead of line of sight between
the missile and target. However, similar to existing
methods, (54) is updated continuously and the velocity is
considered constant over the small sampling-time interval.
If the velocity changes over time, the time-to-go response
over the engagement is no longer perfectly linear and the
initially calculated time to go will not be the final impact
time. Exact changes in the velocity can never be known,
but one way to deal with this source of error is to conduct
a preflight analysis.

Typically, as part of the mission-planning phase for a
munition strike, preflight analysis is conducted to
determine a feasible launch or firing window for the group
of weapons in order to reach a target as close to

Fig. 3. Preflight reference model for impact time.

simultaneously as possible. Current methods for preflight
analysis integrate the standard guidance law into the future
to find the point of closest approach. However, this is only
a general approximation, and the actual flight trajectory
may deviate considerably. Employing the use of
prescribed QSPT trajectories with high-fidelity drag
profiles and atmospheric models can produce accurate
reference models predicting how the impact-time value
changes over the engagement due to changes in velocity.
Any disturbances occurring during the engagement can be
corrected by the corresponding impact-time control.

B. Preflight Reference Data

Through numerical simulation of (1)–(6), subject to
the trajectory design steps in Section V, estimated
reference data can be generated that describe how changes
in the estimated velocity V̂ alter the anticipated impact
time due to drag and nonlinear atmospheric effects. The
estimated time to go is given as

T̂go = S

V̂
, (59)

which results in the estimated impact time of

T̂I = T̂go + t, (60)

where t is the current preflight simulation time. Fig. 3,
generated by (60), shows the resulting impact-time data
over the simulated engagement, with values for impact
time referenced with respect to the downrange axis. These
data demonstrate that with drag and gravity, the velocity
can change rapidly and alter the impact time considerably
over the engagement. For this particular scenario, the
velocity becomes more constant as the munition reaches a
terminal velocity and the final estimated impact time of
53.3 s is reached. Additionally, wind and other
disturbances can be modeled to estimate the effects of
current atmospheric conditions.

The data shown in Fig. 3 were obtained using a
simulation step size of 0.01 s. This produced a table of
5303 impact-time values. These estimated reference data
are compared with real-time data during the actual
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engagement and used to correct any disturbances which
arise.

VII. IMPACT-TIME CONTROL

The impact-time control design presented in this
section was chosen as a bang-bang control for simplicity.
Certainly more advanced designs are possible. The
real-time calculated impact time is given as

TI = Tgo + t, (61)

where Tgo is given by (54). Equation (61) is expected to
contain some error with respect to the impact-time
reference model T̂I:

e = TI − T̂I. (62)

The bang-bang control for the prescribed linear system
of (37) is then given as

μ =

⎧⎪⎨
⎪⎩

δ if e > 0

0 if e = 0

−δ if e < 0,

(63)

where δ is found empirically. The control of (63) is
designed to command the state trajectory of κ

y

4 to a
location which drives the error in (62) to zero, or as close
as possible. A decision logic is employed to ensure that
the state trajectory of κ

y

4 travels in a direction which
minimizes (62). It should also monitor the rate of change
of error versus the amount of applied control μ, since a
reduction in error may not always be possible due to wind
disturbance late in flight, when little trajectory planning
can be applied to correct the error.

VIII. SIMULATION RESULTS

The following simulation results demonstrate the
effectiveness of the optimization algorithm and robustness
of the guidance law to measurement error. Improved
performance of the time-to-go algorithm is also shown.
Two impact-time control cases are also presented. Case 1
analyzes the ability of the proposed guidance law to
reduce the impact-time error under a range of unknown
disturbances. Case 2 is similar but employs a different
engagement scenario.

A. Trajectory Optimization

Table I shows control energies with corresponding arc
lengths computed for the cross-range trajectory. The initial
conditions of x0 = 0, y0 = 0, and χ0 = −π/4, and the
terminal conditions of xT = 10 000, yT = 10 000, and
χT = −π/4 were chosen. The velocity was 400 m/s.

The numeric minimization of (53) for the given
boundary conditions results in ∗κy

n = −4.5929 × 10−4,
the boldface value in the table. Multiple simulation runs
were executed for κ

y

4 on either side of the computed
minimum with the corresponding control energy. Results
show (53) to be an effective optimization with respect to
control energy.

TABLE I
Cross-Range Control-Energy Minimization

κ
y

4 Total Control Energy (J) Arc Length (m)

−8.0000 × 10−4 8.5555 × 10−4 1.7001 × 10−4

−7.0000 × 10−4 8.4480 × 10−4 1.6437 × 10−4

−5.0000 × 10−4 8.4395 × 10−4 1.6123 × 10−4

−4.5929 × 10−4 8.4295 × 10−4 1.6173 × 10−4

−3.0000 × 10−4 8.4465 × 10−4 1.6777 × 10−4

−2.0000 × 10−4 9.1285 × 10−4 1.7571 × 10−4

−1.0000 × 10−4 10.8775 × 10−4 1.8737 × 10−4

Bold face value indicates computed minimum.

Fig. 4. Trajectory with curvature.

Fig. 5. Comparison of QSPT time-to-go algorithm versus GENEX
using range-over-missile-velocity.

B. Performance of Time-to-Go Algorithm

A time-to-go comparison was generated for constant
velocity along the trajectory of Fig. 4, and the results are
given in Fig. 5. For clarity, the cross-range/downrange
projection of the trajectory has been included in all 3-D
plots. Fig. 5 demonstrates that the time-to-go response
generated by (54) over the engagement is linear and is thus
not effected by curvature of the trajectory. In other types
of applications where the velocity along the trajectory
could actually be constant, the initially calculated time to
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TABLE II
Sensor and Gyro Error

Error Type Unit Measure Value

Drag acceleration m/s2 % 3.0
Gyro bias ◦/h 1σ 3.0
Gyro scale factor ppm 1σ 300
Gyro random-walk noise ◦/

√
h Nom 0.02

Fig. 6. True heading angle versus measured.

go is in fact the final impact time, as seen in Fig. 5. The
performance of the switched-form guidance law and
reparameterized trajectory given in appendix A can also
be observed in Fig. 4. The switched-form guidance law
takes control at the downrange, cross-range, and altitude
positions of 10 000, 10 000, and 1000 m, respectively.

In contrast, Fig. 5 also shows the time to go generated
by the GENEX guidance law of [2], which uses the
range-over-missile-velocity method. The velocity was
constant and the initial and terminal angles were the same
ones used to generate Fig. 4. The effects of trajectory
curvature on the standard time-to-go calculation can
clearly be seen. The initial calculation of time to go is
43.3 s, but the actual final impact time is 48 s—nearly
a 5 s disparity, even with constant velocity and a stationary
target.

C. Robustness of the Guidance Law

The remaining simulation results in this section were
generated using a 1962 Standard Atmosphere along with
tabular drag profiles for a generic projectile. It is assumed
that the positional measurements provided by the inertial
measurement unit are perfect. However, since the
inversion matrix of the guidance law is explicit in angles γ

and χ , gyro errors consistent with a tactical-grade inertial
measurement unit are considered. In addition, a percent
error in sensed drag acceleration ad is considered as well.
Table II lists the error values used to obtain the following
results.

Gyro bias, scale factor, and noise are considered in
addition to 3% error in the sensed drag acceleration. Figs.
6 and 7 contrast the measured values against the true

Fig. 7. True flight-path angle versus measured.

Fig. 8. Cross-range tracking performance under no disturbance.

Fig. 9. Altitude tracking performance under no disturbance.

values for χ and γ , respectively, produced along the
trajectory of Fig. 4.

Figs. 8 and 9 show the tracking-error performance of
the guidance law using perfect measurements of χ and γ .
In contrast, Figs. 10 and 11 show the cross-range and
altitude-tracking performance of (25) in response to the
measurement errors listed in Table II. The proposed
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Fig. 10. Cross-range tracking performance subject to the disturbances
of Table I.

Fig. 11. Altitude tracking performance subject to the disturbances of
Table I.

guidance law demonstrates good tracking performance
with negligible deterioration.

D. Impact-Time Control: Case 1

For the final portion of this study, an unknown wind
disturbance of 15 m/s in the positive downrange direction
is considered and, in addition to the measurement errors of
Table II, an unknown lumped nonlinear disturbance is
employed. The wind disturbance spans the full altitude of
the engagement, from 10 000 m to the ground, and
remains constant over that range. The combined effect of
the wind and disturbances without any control over impact
time produces a final impact time of 48.825 s. The
preflight analysis which considered drag and atmosphere
but excluded disturbances determined a desired impact
time of 53.7 s. This requires the corresponding
impact-time control to correct for an error of 4.875 s over
the engagement. The desire is to reduce the error in impact
time to fractions of a second under these given conditions.
Table III provides the initial and terminal conditions for
the engagement.

Fig. 12 contrasts the difference between the
impact-time reference model and the resulting in-flight

TABLE III
Initial and Terminal Conditions, Case 1

Variable Unit Initial Terminal

Velocity m/s 400
Downrange m 0 10 100.0
Cross-range m 0 10 100.0
Altitude m 10 000.0 0
χ rad 0 π/4
γ rad 0 −π/2
Required impact time s 53.70

Fig. 12. Comparison between desired and achieved impact-time
profiles.

Fig. 13. Resulting trajectory under impact-time control.

impact time. The resulting trajectory is given in Fig. 13.
Under the bang-bang control signals of Fig. 14, the
corresponding impact-time error was reduced to 0.577 s.
Fig. 15 compares the effect of the control on the
impact-time error. In that figure, the uncontrolled
impact-time response is shown against the controlled
impact time. Fig. 16 shows the state trajectory for K

y

4
generated by the control. The proposed guidance law
demonstrates a good ability to reduce the error of (62)
under heavy disturbances.

In the previous simulation scenario, the constant wind
disturbance extended from apogee to the ground. It is
difficult to exactly achieve a prescribed impact time under
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Fig. 14. Bang-bang control commands.

Fig. 15. Error comparison between controlled and uncontrolled impact
time.

these conditions, since the correction of impact-time error
relies on trajectory planning. Therefore, the ability to
correct for disturbances late in flight diminishes. In
addition, the trajectory must satisfy impact-angle
requirements that take priority over satisfying impact time.
In the next simulation run, we consider the wind to taper
off with lower altitude and reduce to zero near the ground,
in order to show an improvement in impact-time control.

Fig. 17 shows a considerable improvement in the
impact-time error when the wind diminishes in the lower
altitudes. In this scenario, the impact-time control is
capable of reducing the error to 0.05 s, a vast improvement
if the disturbances are minimal in the final few seconds of
the engagement. Fig. 18 shows perfect satisfaction of the
desired impact time with negligible or no wind.

Few works exist in the open literature to conduct a fair
performance comparison against. However, [8] considers a
time-of-flight control problem for a guided projectile with
several error sources. While the overall scope of that work
also considers range maximization, some brief
comparisons can be made. In [8], a prescribed impact time
is achieved as long as perfect knowledge of both muzzle

Fig. 16. State trajectory of κ
y

4 .

Fig. 17. Impact time with wind tapering off.

Fig. 18. Impact time with no wind.

exit velocity and wind are obtained. The performance of
the algorithm is expected to deteriorate under
measurement error, and the requirement is then to bring
the impact-time dispersal between weapons to within
approximately 2.0 s. As demonstrated in the previous
three impact-time control scenarios, the proposed QSPT

SNYDER ET AL.: QSPT GUIDANCE FOR IMPACT-TIME CONTROL OF PRECISION-MUNITION STRIKE 3019



TABLE IV
Initial and Terminal Conditions, Case 2

Variable Unit Initial Terminal

Velocity m/s 400
Downrange m 0 10 000.0
Cross-range m 0 10 000.0
Altitude m 10 000.0 0
χ rad π/4 −π/18
γ rad 0 −π/4
Required impact time s 56.16

Fig. 19. Minimum-curvature trajectory with no impact-time control.

guidance algorithm can reduce the impact-time error to
well below 1 s under a series of unknown disturbances.

E. Impact-Time Control: Case 2

In Case 2, all of the previous measurement errors are
considered and an unknown wind disturbance of 7 m/s in
the positive downrange direction is present. Table IV
details the engagement parameters and Fig. 19 shows the
optimized trajectory set by *K

y

4 and *Kz
4 with no impact

time adjustment made by the control.
From the preflight-analysis stage, a desired impact

time was determined to be 56.16 s. The unknown wind
disturbance causes the projectile to reach the target earlier,
at 54.17 s. The corresponding impact-time control reduced
the impact-time error to 0.298 s, and the resulting
trajectory is given in Fig. 20. The impact time error is
given in Fig. 21.

IX. CONCLUSION

Results demonstrate that the proposed guidance law is
robust with respect to measurement noise and error. The
arc-length-based time-to-go calculation has also been
shown to be free of error resulting from trajectory
curvature, thus improving the in-flight calculation of
impact time. Impact-time control Cases 1 and 2 show that
when subjected to unknown wind disturbances, the
corresponding impact-time control is capable of reducing
the impact-time error to much less than 1 s. It can also be
seen from these results that for disturbances which occur
late in flight, when trajectory planning is not possible, the

Fig. 20. Trajectory resulting from controlled impact time.

Fig. 21. Comparison between preflight reference model and in-flight
computed impact time.

impact-time error can grow slightly, as seen in both Cases
1 and 2. When very little disturbance is encountered in the
final seconds of flight, the impact-time error is reduced to
zero, as shown in Case 1.

APPENDIX A. REPARAMETERIZATION OF GUIDANCE
LAW

The derivation for the reparameterized trajectories and
the switched guidance law follows in an identical manner
from Section II.D. Reparameterize (8) in terms of z as

yn (z) = a
y
n + c

y
nz + κ

y
n z2

xn (z) = ax
n + cx

nz + κx
n z2.

(64)

Parameterization of the trajectories is chosen to satisfy
the dynamic equations

∂y

∂z
= cot (γ ) sin (χ) ,

∂x

∂z
= cot (γ ) cos (χ) . (65)

Then the error is given as

ey = y − yn, ex = x − xn, (66)

where [
ëy

ëx

]
= A + B

[
uχ

uγ

]
(67)
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and

A =⎡
⎢⎢⎢⎢⎣

−ad cos(γ ) sin(χ) − 2g sin(γ ) cos(γ ) sin(χ) − 2κ
y
n (ż)2

+ ∂
∂z

yn

(
ad sin(γ ) + g

(
sin2(γ ) − cos2(γ )

))
−ad cos(γ ) cos(χ) − 2g sin(γ ) cos(γ ) cos(χ) − 2κx

n (ż)2

+ ∂
∂z

xn

(
ad sin(γ ) + g

(
sin2(γ ) − cos2(γ )

))

⎤
⎥⎥⎥⎥⎦

(68)

B =
[

cos(χ) − sin(γ ) sin(χ) − ∂
∂z

yn cos(γ )

− sin(χ) − sin(γ ) cos(χ) − ∂
∂z

xn cos(γ )

]
. (69)

The closed-loop guidance law for the reparameterized
system of (63) is thus given as[

uχ

uγ

]
= B−1

[[
ky (y − yn) + k′

y (ẏ − ẏn)

kx (x − xn) + k′
x (ẋ − ẋn)

]
− A

]
.

(70)
It should be noted that the A matrix in this

switched-form guidance law contains no coefficient time
derivatives, as compared with the regular form of A in
(23). This is because of the fact that during the terminal
phase of flight, the munition is approaching the target
from above, and trajectory planning is not possible to
correct any error in impact time. Therefore, the QSPT
coefficients remain constant.

APPENDIX B. INTEGRAL CHANGE OF VARIABLE

Velocity is expressed as

V =
√

ẋ2 + ẏ2. (71)

Factoring out ẋ gives

V = ẋ

√
1 +

(
∂y

∂x

)2

. (72)

Writing in terms of QSPT and separating the differential
gives

V dt =
√

1 + (
c
y
n + 2κ

y
n x
)2

dx, (73)

which gives the final transformation

dt =
√

1 + (
c
y
n + 2κ

y
n x
)2

V
dx. (74)

REFERENCES

[1] Ryoo, C.-K., Cho, H., and Tahk, M.-J.
Closed-form solutions of optimal guidance with terminal
impact angle constraint.
In Proceedings of 2003 IEEE Conference on Control
Applications, Istanbul, Turkey, June 23–25, 2003, 1, 504–509.

[2] Ohlmeyer, E. J.
Control of terminal engagement geometry using generalized
vector explicit guidance.
In Proceedings of the 2003 American Control Conference,
Denver, CO, June 2003.

[3] Ryoo, C.-K., Cho, H., and Tahk, M.-J.
Optimal guidance laws with terminal impact angle constraint.
Journal of Guidance, Control, and Dynamics, 28, 4 (2005),
724–732.

[4] Lee, J.-I., Jeon, I.-S., and Tahk, M.-J.
Guidance law to control impact time and angle.
IEEE Transactions on Aerospace and Electronic Systems, 43,
1 (Jan. 2007), 310–310.

[5] Song, T. L., and Shin, S. J.
Time-optimal impact angle control for vertical plane
engagements.
IEEE Transactions on Aerospace and Electronic Systems, 35,
2 (Apr. 1999), 738–742.

[6] Kim, M., Jung, B. Han, B., Lee, S., and Kim, Y.
Lyapunov-based impact time control guidance laws against
stationary targets.
IEEE Transactions on Aerospace and Electronic Systems, 51,
2 (Apr. 2015), 1111–1122.

[7] Jeon, I.-S., Lee, J.-I., and Tahk, M.-J.
Impact-time-control guidance law for anti-ship
missiles.
IEEE Transactions on Control Systems Technology, 14, 2
(Mar. 2006), 260–266.

[8] Phillips, C. A.
Guidance algorithm for range maximization and time-of-flight
control of a guided projectile.
Journal of Guidance, Control, and Dynamics, 31, 5 (2008),
1447–1455. doi:10.2514/1.31327

[9] Ryoo, C.-K., Tahk, M.-J., and Cho, H.
Practical time-to-go estimation methods for optimal guidance.
In Guidance, Navigation, and Control Conference and
Exhibit, Portland, OR, Aug. 1999, AIAA-99-4143.

[10] Lee, C.-H., Kim, T.-H., and Tahk, M.-J.
Effects of time-to-go errors on performance of optimal
guidance laws.
IEEE Transactions on Aerospace and Electronic Systems, 51,
4 (Oct. 2015), 3270–3281.

[11] Lee, C.-H., Kim, T.-H., Tahk, M.-J., and Whang, I.-H.
Polynomial guidance laws considering terminal impact angle
and acceleration constraints.
IEEE Transactions on Aerospace and Electronic Systems, 49,
1 (Jan. 2013), 74–92.

[12] Weitz, L. A., and Hurtado, J. E.
A time-to-go control law for spacing vehicles at a point.
In AIAA Guidance, Navigation, and Control Conference and
Exhibit, Portland, OR, Aug. 2011.

[13] Lam, V. C.
Time-to-go estimate for missile guidance.
In AIAA Guidance, Navigation, and Control Conference and
Exhibit, San Francisco, CA, Aug. 2005.

[14] Kim, T.-H., Lee, C.-H., and Tahk, M.-J.
Time-to-go polynomial guidance laws with terminal impact
angle/acceleration constraints.
In Proceedings of the 18th World Congress, The International
Federation of Automatic Control, Milano, Italy, Aug.–Sept.
2011.

[15] Hull, D. G., and Radke, J. J.
Time-to-go prediction for a homing missile based on
minimum-time trajectories.
In Guidance, Navigation and Control Conference,
Minneapolis, MN, Aug. 1988, 88-4064-CP.

[16] Cho, H., Ryoo, C. K., and Tahk, M.-J.
Closed-form optimal guidance law for missiles of
time-varying velocity.
Journal of Guidance, Control, and Dynamics, 19, 5 (1996),
1017–1022.

[17] Cho, H., Ryoo, C. K., and Tahk, M.-J.
Implementation of optimal guidance laws using predicted
missile velocity profiles.

SNYDER ET AL.: QSPT GUIDANCE FOR IMPACT-TIME CONTROL OF PRECISION-MUNITION STRIKE 3021



Journal of Guidance, Control, and Dynamics, 22, 4 (1999),
579–588.

[18] Baba, Y., Takehira, T., and Takano, H.
New guidance law for a missile with varying velocity.
In Guidance, Navigation, and Control Conference, Scottsdale,
AZ, Aug. 1994, AIAA-94-3565-CP.

[19] Lee, J.-I., Jeon, I.-S., and Tahk, M.-J.
Guidance law using augmented trajectory-reshaping command
for salvo attack of multiple missiles.
In International Control Conference, Glasgow, United
Kingdom, Aug.–Sept. 2006.

[20] Arita, S., and Ueno, S.
Improvement of guidance law for simultaneous attack.

In Proceedings of SICE Annual Conference, Tokyo, Japan,
Sept. 2011.

[21] Wu, J., Ma, P., and Ji, J.
Research on cooperative control method of saturation attack.
In 2007 IEEE International Conference on Automation and
Logistics, Jinan, China, Aug. 2007.

[22] Lin, C.-L., Lin, Y.-P., and Chen, K.-M.
On the design of fuzzified trajectory shaping guidance law.
ISA Transactions, 48, 2 (Apr. 2009), 148–155.

[23] Snyder, M. G.
A new impact time control guidance law for precise
time-on-target missile strike.
In Aerospace Sciences Conference, Kissimmee, FL, Jan. 2015.

Mark G. Snyder received his B.S. and M.S. degrees from the University of Central
Florida in 2006 and 2009, respectively. He is currently a Ph.D. degree candidate at the
University of Central Florida as well as an adjunct faculty member in the Department of
Computer and Electrical Engineering at Embry-Riddle Aeronautical University in
Daytona Beach, Florida.

Zhihua Qu (M’90—SM’93—F’09) is the SAIC Endowed Professor in the College of
Engineering and Computer Science and a professor and the chair of Electrical and
Computer Engineering at the University of Central Florida, as well as the director of the
FEEDER Center (one of the Department of Energy–funded centers on distributed
technologies and a smart grid). His recent research focuses on networked systems and
cooperative control, distributed optimization, and their applications to energy/power
systems and autonomous vehicles. He is a Fellow of the IEEE and AAAS. He served on
the board of governors of the IEEE Control Systems Society and as an associate editor
for IEEE Transactions on Automatic Control and the International Journal of Robotics
and Automation (since 1995). Currently, he serves as an associate editor for Automatica
and IEEE Access.

Richard A. Hull received his B.S. degree in engineering science from the University of
Florida and his M.S. and Ph.D. degrees in electrical engineering from the University of
Central Florida. He has served as a guidance and control system engineer in the
aerospace industry for over 40 years, working for United Technologies, Goodrich,
SAIC, Lockheed Martin, L3 Aerospace, McDonnell Douglas, and Boeing. He is
currently a technical fellow with UTC Aerospace Systems.

3022 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 52, NO. 6 DECEMBER 2016



Richard J. Prazenica is an assistant professor of aerospace engineering at
Embry-Riddle Aeronautical University in Daytona Beach, Florida. He received his B.S.
degree in mechanical engineering from the University of Pennsylvania, and his M.S.
and Ph.D. degrees in aerospace engineering from the University of Florida.

SNYDER ET AL.: QSPT GUIDANCE FOR IMPACT-TIME CONTROL OF PRECISION-MUNITION STRIKE 3023


